새로운 업데이트

바이오 공정 핵심: 세포 배양 배지 선택의 모든 것

이미지
  세포 배양 배지 (Cell Culture Media)  선택의 모든 것 바이오 의약품 생산에서 세포의 성장과 원하는 물질 생산을 최적화하는 것은 성패를 가르는 핵심입니다. 이 중에서도 세포 배양 배지(Cell Culture Media) 선택은 공정의 효율성, 생산성, 그리고 최종 제품의 품질에 직접적인 영향을 미치는 가장 중요한 초기 단계 중 하나입니다. "세포의 집"이자 "영양 공급원"인 배지를 어떻게 선택하느냐에 따라 공정 전체의 경제성과 안정성이 결정됩니다. 1. 세포 배양 배지 선택의 주요 고려사항 세포 배양 배지를 선택할 때는 단순히 세포가 '잘 자라는지'를 넘어, 바이오 공정 전반의 요구사항과 규제 환경을 종합적으로 고려해야 합니다. 다음은 바이오 공정 전문가들이 필수적으로 검토하는 핵심 요소들입니다. 1.1. 세포주의 특성 및 요구 조건 가장 근본적인 고려사항은 배양하려는 세포주(Cell Line)의 종류와 그들이 필요로 하는 영양 환경입니다. 세포마다 대사 경로, 증식 속도, 부착성 여부가 다르기 때문에 맞춤형 접근이 필요합니다. 세포 유형 (Cell Type): 부착 세포 (Adherent Cells): DMEM(Dulbecco's Modified Eagle Medium), MEM(Minimum Essential Medium)과 같이 부착 성장을 지원하는 배지가 주로 사용됩니다. (예: CHO, HEK293 세포) 부유 세포 (Suspension Cells): RPMI-1640, F-12와 같이 자유 부유 성장을 지원하여 대규모 바이오리액터(Bioreactor) 공정에 적합한 배지가 선호됩니다. (예: 림프구, 상업용 항체 생산 CHO 세포) 특수 세포 (Primary Cells, Stem Cells): 줄기세포(Stem Cells)는 분화능 유지(Pluripotency Maintenance)를 위해 특별히 고안된 화학적으로 정의된 배지(Chemically Defined Media, ...

바이오공정의 필수 관문, 박테리아 제거 시험 (Bacterial Retention Test) 완벽 해부

 

바이오공정의 필수 관문, 박테리아 제거 시험 (Bacterial Retention Test) 완벽 해부

바이오의약품 생산 공정에서 무균성(sterility)은 제품의 안전성과 직결되는 가장 중요한 품질 속성입니다. 특히, 최종 제품의 멸균을 위해 사용되는 멤브레인 필터의 성능을 검증하는 과정은 필수적입니다. 이 필터가 의약품 제조 과정에서 유입될 수 있는 미생물을 효과적으로 제거하는지 확인하는 시험을 박테리아 제거 시험 (Bacterial Retention Test) 또는 박테리아 챌린지 테스트 (Bacterial Challenge Test, BCT)라고 합니다. 이번 글에서는 바이오공정 전문가의 시각에서 이 시험의 중요성, 절차, 그리고 관련 규제 및 실제 사례까지 깊이 있게 다뤄보겠습니다.

1. 박테리아 제거 시험, 왜 중요한가?

박테리아 제거 시험은 멸균 등급(Sterilizing-grade) 필터의 성능을 과학적으로 입증하는 핵심 절차입니다. 바이오의약품은 환자에게 직접 투여되는 경우가 많으므로, 무균성은 타협할 수 없는 가치입니다.

  • 환자 안전 보장: 의약품에 미생물이 잔존할 경우, 심각한 감염이나 패혈증을 유발할 수 있습니다. 박테리아 제거 시험은 필터가 이러한 위험을 차단할 수 있음을 증명하여 환자 안전을 보장하는 기초가 됩니다.

  • 규제 기관의 요구사항: 미국 식품의약국(FDA)과 같은 규제 기관들은 바이오의약품의 무균성을 입증하기 위해 박테리아 제거 시험 데이터를 요구합니다. 이는 의약품 허가 및 품질 관리의 필수적인 부분입니다.

  • 공정 안정성 확보: 필터의 성능이 일정하지 않으면 배치(batch) 간 품질 편차가 발생할 수 있습니다. 박테리아 제거 시험을 통해 필터의 성능을 검증함으로써, 바이오 공정의 신뢰성과 재현성을 확보할 수 있습니다.

2. 시험의 표준: Brevundimonas diminuta 와 LRV

박테리아 제거 시험은 단순히 '박테리아가 통과하지 않는지'를 확인하는 것을 넘어, 정량적인 데이터를 산출하는 과학적 절차입니다. 이 시험에는 특정 표준 미생물이 사용됩니다.

  • 표준 도전 미생물: Brevundimonas diminuta (B. diminuta) (ATCC 19146)가 가장 널리 사용됩니다. 이 박테리아는 크기가 작고 (대략 0.3 µm x 0.8 µm), 멸균 등급 필터의 공칭 기공 크기(nominal pore size)인 0.22 µm를 통과할 수 있는 '최악의 시나리오'를 시뮬레이션하기에 적합하기 때문입니다.

  • Logarithmic Reduction Value (LRV): 박테리아 제거 시험의 핵심 결과값은 **LRV(Logarithmic Reduction Value)**입니다. 이는 필터가 미생물 수를 얼마나 감소시킬 수 있는지를 로그 스케일로 나타낸 값입니다.

    • $$LRV = log_{10} \frac{N_{in}}{N_{out}}$$

    • $N_{in}$: 필터에 주입된 박테리아의 수

    • $N_{out}$: 필터를 통과한 박테리아의 수

    • 예를 들어, 필터에 1억 개의 박테리아를 주입했는데, 통과한 박테리아가 1개도 검출되지 않았다면, LRV는 8 이상이 됩니다. 규제 기관들은 보통 멸균 등급 필터에 대해 7 이상의 LRV를 요구합니다.

3. 박테리아 제거 시험의 구체적인 절차 (ASTM F838-20 기준)

박테리아 제거 시험은 일반적으로 ASTM F838-20과 같은 표준 시험법에 따라 수행됩니다. 일반적인 절차는 다음과 같습니다.

  1. 필터 및 장비 준비: 시험할 필터, 필터 하우징, 압력계, 멸균된 용액 및 배지 등 모든 장비를 준비합니다. 모든 장비는 시험 전 멸균을 거쳐야 합니다.

  2. 도전 미생물 현탁액 제조: Brevundimonas diminuta를 배양하여 일정 농도 이상의 현탁액을 만듭니다. 이 현탁액의 농도는 보통 10^7 CFU/cm² (필터 면적당 콜로니 형성 단위) 이상으로 설정됩니다.

  3. 시험 진행:

    • 시험할 필터를 필터 하우징에 장착합니다.

    • 멸균된 캐리어 유체(carrier fluid, 예: Saline Lactose Broth, SLB)에 도전 미생물 현탁액을 첨가합니다.

    • 일정한 압력과 유량으로 이 현탁액을 필터에 통과시킵니다. 이 과정은 실제 공정 조건을 최대한 모사하도록 설계됩니다.

  4. 여과액(Filtrate) 수집 및 분석: 필터를 통과한 여과액(filtrate)을 멸균된 용기에 수집합니다.

    • 수집된 여과액을 멤브레인 여과법(membrane filtration)을 사용하여 필터링하고, 미생물 배지에 옮겨 배양합니다.

    • 일정 시간(예: 7일) 배양 후, 미생물 콜로니 수를 계산하여 $$N_{out}$$ 값을 구합니다.

  5. 대조군(Control) 실험:

    • 양성 대조군(Positive Control): 현탁액의 초기 농도를 측정하여 $$N_{in}$$ 값을 확인합니다.

    • 음성 대조군(Negative Control): 멸균된 캐리어 유체를 필터에 통과시켜 미생물 오염이 없었음을 확인합니다.

  6. 결과 분석 및 LRV 계산: $$N_{in}$$$$N_{out}$$ 값을 이용하여 LRV를 계산합니다. $$N_{out}$$이 0일 경우, 검출 한계(detection limit)를 고려하여 'LRV > 8'과 같이 표현합니다.

4. 실제 사례: 필터 검증의 중요성

글로벌 필터 제조사인 Sartorius, MilliporeSigma(Merck) 등은 바이오 제약사를 위한 광범위한 필터 검증 서비스를 제공합니다. 이들 회사들은 고객사의 특정 의약품과 공정 조건(예: 유체 점도, pH, 온도)을 고려하여 맞춤형 박테리아 제거 시험을 수행합니다.

  • 실제 사례: 한 바이오 의약품 제조사가 특정 항체 생산 공정에 새로운 멸균 필터를 도입하려 했습니다. 제조사는 필터 제조사의 표준 BCT 데이터만으로는 부족하다고 판단하여, 자사 제품(항체 용액)을 캐리어 유체로 사용하여 필터 검증을 의뢰했습니다. 그 결과, 특정 항체 용액이 필터 멤브레인에 미치는 영향으로 인해 표준 조건보다 필터 성능이 미세하게 저하됨을 확인했습니다. 이 데이터는 제조사가 공정 조건을 최적화하고 필터 사용량을 재검토하는 중요한 근거가 되었습니다.

5. 무결성 시험 (Integrity Test)과의 관계

박테리아 제거 시험은 필터의 성능을 파괴적으로 확인하는 시험입니다. 즉, 시험에 사용된 필터는 재사용할 수 없습니다. 따라서 실제 생산 공정에서는 각 배치마다 박테리아 제거 시험을 할 수 없으므로, 필터의 무결성을 비파괴적으로 확인하는 무결성 시험 (Integrity Test)을 수행합니다.

무결성 시험(예: Bubble Point Test, Diffusive Flow Test)은 필터의 물리적 상태(공극 크기, 결함 여부)를 간접적으로 확인하는 방법입니다. 필터 제조사는 박테리아 제거 시험을 통해 '특정 무결성 시험값 이상일 때 박테리아가 제거됨'을 통계적으로 입증하고, 이 값을 기준으로 생산 현장에서 필터의 무결성을 매 배치마다 확인합니다.

6. 결론: 바이오공정의 신뢰를 구축하는 과정

박테리아 제거 시험은 단순히 규제 준수를 위한 형식적인 절차가 아닙니다. 이는 바이오의약품의 무균성을 보장하고, 궁극적으로 환자에게 안전한 제품을 제공하기 위한 과학적 근거를 마련하는 매우 중요한 과정입니다. 바이오공정 개발자들은 이 시험의 원리를 정확히 이해하고, 공정의 특성에 맞는 맞춤형 검증 전략을 수립함으로써 바이오의약품 생산의 신뢰성을 극대화할 수 있습니다.

  • 키워드: 박테리아 제거 시험, Bacteria Retention Test, Bacterial Challenge Test, 멸균 필터, Sterile Filter, 무균성, Sterility, LRV, Brevundimonas diminuta, 필터 검증, Filter Validation, ASTM F838, 무결성 시험, Integrity Test, 바이오공정

핫 토픽

PUPSIT : FDA 최신 규제 동향, 무균 공정의 새로운 표준을 향한 길

제약 바이오 공정에서의 PFAS 규제 동향 및 업계의 대응 전략

AI 공정 최적화 사례 3가지|제약 공정 수율 개선부터 배치 예측, 스마트 생산까지

PDA의 오염 관리 전략(Contamination Control Strategy, CCS) 완벽 해부

바이오공정의 핵심, 무균 커넥터(aseptic connector): 개념부터 실제 적용 사례까지 완벽 분석

바이오공정의 혁신, Perfusion 연속 배양 기술 분석 및 사례 탐구

바이오 공정 스케일업: 성공적인 상업화를 위한 핵심 전략과 디지털 혁신

Clarification 필터 선택 가이드: 바이오 공정의 핵심 단계

바이오 공정에서 CIP란? – 개념부터 적용까지 완벽 정리

필터 무결성 시험 (Filter Integrity Test) 심층 분석, 종류와 특징 비교